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through electron microscopy, which shows that the 
antiphase domains are rounded to blocky in shape, 
about 50-100 A in diameter (see Fig. 6 in Ghose, Ng & 
Walter, 1972). 

The measurement of the three-dimensional intensity 
profiles were carried out at Syntex Analytical Instru- 
ments, Cupertino, California. This research has been 
supported by NASA grant NGR 05-003-486. 
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Direct Structure Determination of Asymmetric Membrane Systems from X-ray Diffraction* 
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A theoretical analysis of X-ray diffraction from asymmetric planar systems is given. Phase information is 
obtained from the continuous intensity function from such a system. Although a unique phase function 
cannot be determined, it is possible to derive the relatively small number of phase solutions which are 
consistent with the observed diffraction. 

The structure of biological membranes is a subject of 
considerable current interest. X-ray diffraction studies 
have had a dominant role and have yielded much valu- 
able information on this important topic. One fact 
about membrane ultrastructure which is slowly becom- 
ing evident is that most natural biological membranes 
(in contrast to artificial model lipid bilayer systems) 
are asymmetric. This asymmetry appears to be pre- 
dominantly due to the protein component of the mem- 
brane (which is not to rule out the possibility of an 
asymmetric distribution of lipids in the membrane). 
Hence, the functional properties of the membrane are 
determined, in large part, from this property. For- 
tunately, many of the naturally occurring asymmetric 
membrane systems consist of repeating units of mem- 
brane pairs which have a center of symmetry. This per- 
mits the rather well developed theory of diffraction by 
centrosymmetric structures to be utilized in structure 

* This work was supported by NHLI Grant HL 06285. 

determination. However, there are many other mem- 
brane systems of interest where the former theory is 
not applicable (e.g., dispersions of membrane vesicles 
and sheets). The present paper is concerned with the 
analysis of these asymmetric systems. 

The difficulty in analyzing diffraction data from 
asymmetric structures (as well as symmetric ones) lies 
in the well-known phase problem of X-ray diffraction 
theory. There are indirect methods of obtaining this 
phase information (e.g. isomorphous replacement), but 
they have not been very useful for membranes. There 
has been much work in the past few years on direct 
methods of phase determination. These studies have 
shown that the X-ray diffraction intensity data con- 
tain some of the phase information necessary for a 
structural determination. Crucial to these studies has 
been the realization that the rather simple mathematical 
properties of positivity and boundedness of the electron 
density distribution (e.d.d.) place a severe restriction 
on its Fourier transform. In particular, the property 
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of boundedness is of utmost importance since it means 
that the Fourier transform must be an analytic func- 
tion. Hence, the full power of analytic-function theory 
can be utilized to attack the problem. 

Consider a planar multilayer system of a finite num- 
ber, n, of membrane sheets of infinite radius. One is 
interested in determining the projection t , (x)  of the 
electron density of the multilayer onto the normal to 
the sheets. The observed diffracted intensity from such 
a system will be denoted 

I.(X)ocK(X). IT.(X)I 2 (1) 

where T . ( X )  is the Fourier transform of t . (x)  and K(X) 
is a correction factor appropriate for the particular ex- 
perimental arrangement being used. Of great impor- 
tance is the autocorrelation function of t . (x) ,  denoted 
by Hosemann & Bagchi (1962) as 

Q ( x ) = t , ( x )  • t , ( - x ) = F . T . I T , ( X ) [  2, (2) 

where the • denotes the convolution product, 

t , (x)  • t , ( -  x ) =  I tn(X')tn(X' + x ) d x '  . (3) 

The above authors showed that if n is not too large, 
the function 

Q o ( x ) = t ( x )  * t ( - x )  (4) 

can be obtained from Q(x) ,  where t ( x )  is the desired 
e.d.d, of one membrane sheet. When t ( x )  contains a 
center of symmetry, it can be determined by a decon- 
volution of equation (4). Analyses of this type have 
been carried out for artificial lipid bilayer systems by 
Lesslauer & Blasie (1972) and for naturally occurring 
membrane pair systems by Worthington, King & 
McIntosh (1973). In the case of membrane dispersions, 
one observes the function IT(X)[ 2 from which Qo(x) 
can be obtained directly by Fourier transformation. 
Hence, the structure analysis of asymmetric systems 
to be discussed in this paper will assume that one has 
obtained the Qo(x) function in one of these two ways. 
Thus, the problem is to obtain t ( x )  from Qo(x) by some 
sort of deconvolution procedure, analogous to the cen- 
trosymmetric case, or equivalently, to determine the 
phase function directly from the IT(X)[ 2 function. 

From the convolution theorem of Fourier transform 
theory it is known that the autocorrelation function is 

Therefore, if the continuous intensity function IT (X)[  z 
can be obtained, it is a simple matter to obtain Qo(x) 
by the above transformation (it is assumed that one 
has calculated the necessary factors to obtain IT(X)] 2 
from the observed intensity function). One potential 
problem that becomes apparent is that IT(X)] 2 is only 
known from some lower limit X0 > 0 to an upper limit 
X1. In principle one can extrapolate the [T(X)I 2 func- 
tion both to zero and infinity (King & Worthington, 
1971), apparently circumventing this problem. How- 

ever, in practice the extrapolation to infinity is frus- 
trated by the presence of experimental errors in the 
data. 

Furthermore, in this procedure one must know the 
width of the 'structure' under consideration in order 
to satisfactorily accomplish the extrapolations. Various 
methods of extrapolating IT(X)[ 2 to X = 0  have been 
used. For the purpose of this discussion, I shall assume 
a method has been found that leads to correct values 
of Qo(x). 

Deconvolution of Qo(x) 

Before progressing to the asymmetric deconvolution, 
it might prove useful to summarize briefly the proce- 
dure for symmetric structures. After Hosemann & 
Bagchi, the structure of width d is divided into 2(m + 1) 
equal strips of width & The width ~ is made small 
enough so that Qo(x) and t ( x )  are approximately con- 
stant in ~. The electron densities of the strips are 
denoted [to, tl, . . . tm-1, tm, tm, t in - l , .  • • h . • • to]. The 
e.d.d, can be obtained uniquely from Qo(x) through the 
following recursion relation 

Q o ( d - n c ~ ) = ~ 2  ~ h t , - ~  n = 0 , 1 , . . .  2(m+ 1). (7) 
1 = 0  

The only ambiguity in the recursion relation is that 
the first value to is obtained by taking the square root 
of Qo(d) and either the + or - root can be taken. The 
two structures so obtained are the negatives of each 
other. If the property of positivity of the electron den- 
sity is invoked, the negative structure is ruled out and 
uniqueness is obtained. 

In the case of biological membranes, one is usually 
interested in the e.d.d, of the membrane relative to the 
density of the surrounding fluid layer. Thus the nega- 
tive structure cannot be immediately ruled out and 
must be considered. However, in practice it can usually 
be eliminated on general physical and chemical 
grounds. 

In the case of an asymmetric structure, the same sort 
of latticing procedure is applied, i.e. the structure of 
width d is divided into (m + 1) strips of equal width ~. 
The electron densities of the strips are denoted 
[to, q,  t2, . . . h • • • t in-l ,  tin]. The electron-density distri- 
bution can be obtained from the following set of non- 
linear algebraic equations 

m ~ r /  

Q0(n3)=~ 2 ~ h h + .  n = 0 , 1 , . . . , m .  (8) 
i = 0  

The equations are no longer in the form of a recursion 
relation. They no longer possess a unique solution 
and, moreover, may contain an immense manifold of 
solutions. 

The nature of this ambiguity in the solution of the 
autocorrelation function has been discussed by Cal- 
deron & Pepinsky (1952). Using the notation here, they 
showed that if T(X) can be factored as 

T(X)= T I ( X ) .  T2(X). T3(X)...  T ~ ( X ) . . . ,  (9) 

A C 3 1 A  - 9* 
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that there is an indeterminancy in t(x) given by 
t(x)=h(+x) • t2(+x) • ta(+x) • . . . h ( + x )  • .. .(10) 
In the situation where t(x) possesses a center of sym- 
metry, there is no ambiguity in equation (10) and a 
unique solution is obtained. In the asymmetric case 
each sign combination of equation (10) generally gives 
a different solution to the autocorrelation function 
Qo(x). However, this result does not answer the key 
question of how T(X) can be factored or even whether 
it is always possible to factor it at all. It will be seen 
that a much more meaningful investigation can be 
made by looking at the mathematical properties of 
T(X) directly. 

If we denote its limiting value in D+ as ~ +(X) and 
in D_ as ¢b-(X), Gakhov (1966) has shown that 

q~ +(X)-~- (X)=B(X)T(X)  . (17) 

Furthermore, it is apparent that 

1 1 ~  B(X')T(X')dX' (18) 
2~ +(X)= -m" _ X ' - X - i e  

Hence, if we identify B(X) as the factor in front of 
T(X') in the integral of equation (15), it follows that 

¢b +(X) =exp [2io:(X)lcb-(X). (19) 

Solution of the phase problem 

Given the generally complex function T(X) which is 
the Fourier transform of a bounded real function t(x), 
the latter defined for a finite interval (0, d) on the real 
axis and zero elsewhere, the possibility of reconstruct- 
ing the function T(X) when only its amplitude IT(X)[ 
is known should first be considered. The quantities are 
related by the expression 

T(X)=IT(X)I exp [ice(X)]. (11) 

One can analytically continue this function from the 
real axis to the entire complex plane by defining 

T(Z)= l~ t(x) exp (i2nZx)dx , (12) 

where Z=X+iY .  It is apparent from equation (12) 
that T(Z) is analytic in the entire complex plane except 
for Y - + - o o .  In fact, from Titchmarsh (1939) it is 
seen that T(Z) is an integral function of order one. 
Furthermore, from the asymptotic behavior of Fourier 
transforms (Dettman, 1965), one sees that 

T(Z)~i /Z  (13) 

for ]Z] --+ c~ in the lower half plane (denoted by D_). 
By considering Cauchy's integral around a contour, 

L, consisting of the real axis and an infinite semicircle 
in the upper half plane (denoted by D+), one can write 

1 I T(Z')dZ' 
T ( Z ) = ~  z Z ' - Z  ' Z in D+ . (14) 

The solution to the boundary value problem defined 
by equation (19) will be necessary in order to find an 
expression for the phase function. That is, it is required 
to find two functions ¢0 +(Z) and ~b-(Z) which are 
analytic in D+ and D_, respectively, and which also 
satisfy equation (19). The boundary-value problem 
thus stated is an established one in complex function 
theory, and is known as the homogeneous Riemann 
problem for the semi-plane. The solution to the prob- 
lem is discussed by Gakhov (1966), and since it is not 
a familiar problem to many readers a brief summary 
of it is given in the Appendix. 

With the solution to the homogeneous Riemann 
problem from the Appendix, given by equation (A-7), 
it is possible to solve for IT(X)] in terms of the phase 
function. The solution is accomplished by utilizing the 
Plemelj formulae, given by equation (17). Hence, 

2Pm-I(X) [ 11~_ ln Go(X')dX' ] 
]T(X)I-  (XZ+l)m/z exp ~ ~ X ' - X  " 

(20) 

If we take the natural logarithm of both sides of equa- 
tion (20), it follows that 

In{ (Xz+I)"/2IT(X)I} 1 1_ ~ ½1n Go(X')dX' 
2P,,_i(X) " = -hi co - .... ~Y'-X .... 

(21) 

If the following analytic function is considered: 

1 I~ - ½1nGo(X')dX' (22) 
• ( z ) =  ~ oo x ' - z  ' 

From this integral it follows that 

T(X)= ~1  ,Jl ~_oo i exp [ -  i0¢(X')]X,_X_iesin o¢(X')T(X')dX" 

(15) 

in the limit where (e > 0) -+ 0. It will now be useful to 
consider the following analytic function 

l I~ - B(X')T(X')dX' (16) 
• ( z ) =  ~ -  oo x ' - z  

the Plemelj formulae indicate that 

q, + (X) -  q~-(X) =½ In Go(X), (23) 

(X z + 1)mnlT(X)l 
• +(X) + ¢b-(X)=ln 2P~ ~(~(X) - - J "  (24) 

It is now necessary to investigate the boundary-value 
problem designated as the non-homogeneous Riemann 
problem, 

• + ( X ) = ( - 1 ) .  ~-(X)+g(X)  (25) 
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where the right-hand side of equation (24) is g (X). The 
solution to this problem is given in the Appendix for 
the case where T(X) has no zeros and also for the situa- 
tion when T(X) does have zeros. 

The simplest case, and the one which will be dis- 
cussed first, is when T(Z) has no zeros on the finite 
real axis or in the upper half plane. The solution can 
be obtained simply from the solution of the non- 
homogeneous problem in the semi-plane given by 
equation (A-12) in the Appendix, for m = 0 .  Again, 
utilizing the Plemelj formulae, one can calculate the 
phase function to be 

a,(X)- 2X l °° In IT(X')IdX' 
n o X, z_ X2 (26) 

Since this solution will be seen to be of great impor- 
tance, it will be designated as the fundamental solu- 
tion, type I, of the phase problem. It is apparent that, 
given the magnitude of the transform along the real 
axis, the fundamental phase solution can be directly 
calculated. Unfortunately, the fundamental solution is 
not the only solution to the phase problem. Since it 
was assumed that all of the zeros of T(Z) were in the 
lower half plane to obtain equation (26), it should be 
apparent that the non-uniqueness of the phase prob- 
lem is somehow intimately linked to the distribution 
of zeros in the complex plane. 

Another important case, designated as the funda- 
mental solution, type II, is when there are zeros on the 
real axis but none in D+. The solution to the phase 
problem can be obtained in this case from the solution 
of the non-homogeneous problem on the segmented 
real axis, given by equation (A-15) in the Appendix. 
Once again, the Plemlj formulae are utilized to obtain 
the phase function 

• f ( x /2  "J- 1)m/zlT(X')l I . . . .  

~ii(X.) __ 2 X . R ( X ) I  °° R--~-~f ) ~__ ~._1~_~. ...... 
o n(x')  ( x ' 2 - x  2) 

+ m[n/2-tan -1 (l/X)] (27) 

where R(X) is the polynomial coinciding with the 
zeros of T(X) and the index m is also determined by 
the real zeros. Hence, as long as there are no zeros in 
D+ a unique solution to the phase problem exists, given 
by either equation (26) or equation (27), depending 
on whether T(X) has zeros or not. 

In the general situation there may be zeros any- 
where in the whole complex plane, including D+. 
Titchmarsh (1926) has shown that a function such as 
T(Z) defined by equation (12) can be written 

oo 
T ( Z ) =  T(0) exp [indZ] I-I (1-Z/Z , ) ,  

n=l 
(28) 

where the product is extended over all of the zeros Z,. 
Hence, T(Z) is completely determined by a knowledge 

of all of its zeros. Since only the positions of the real 
zeros of T(X) are known experimentally, the non- 
uniqueness of the solution to the phase problem is due 
to ignorance of the positions of the non-real zeros. 
Although equation (28) is completely general it will 
prove useful to have another expression for T(Z). In 
the special case where there are no zeros on the real 
axis, but there are some in D+, Toll (1956) has shown 
that T(X) can be written as 

[ X - Z , ]  
T(X)=IT(X)I exp [i~,(X)] II \ X-Z*n 1'  (29) 

where Z~' is the conjugate zero to Z,  and the product 
is over all zeros in D+. In the most general case, with 
zeros on the real axis, ~(X)  should be replaced by 
~ii(X) in equation (29). 

The rather complex mathematical argument given in 
the preceding discussion is necessary for the rigorous 
development of the concepts presented. However, a 
rather intuitive argument based on elementary com- 
plex-function theory might be appropriate at this point. 
It is well known that the real and imaginary parts of 
an analytic function are uniquely determinable from 
each other. If one takes the natural logarithm of T(Z) 
and assumes that it is also analytic, then from the 
preceding argument it follows that In [TI and the phase 
function ~ are also uniquely determinable from each 
other. Equations (20) and (26) illustrate such a rela- 
tionship between these two functions. Since the log- 
arithm of zero is not defined, it is not surprising that 
the zeros of T(Z) pose special problems for the anal- 
ysis. When these singular points are properly taken 
into account, the results of the preceding discussion 
follow. 

Discussion 

What has been obtained is the fact that the zeros of 
the analytic continuation of T(X) to the complex plane 
are of supreme importance in the solution of the phase 
problem. If the positions of all of these zeros were 
known, the phase could be uniquely determined from 
the experimentally obtainable intensity data. However, 
since only the real zeros are amenable to experimental 
location, it is only possible to calculate one of the two 
special cases considered in the preceding discussion, 
i.e. the fundamental solutions of type I or type II. In 
general, there is no guarantee that either of these solu- 
tions is the correct one. Hence, there is a fundamental 
indeterminancy in the phase problem. 

In order to gain further insight into the nature of the 
phase problem, it would be informative to know how 
many zeros T(Z) has. Titchmarsh (1926) has shown 
that functions of this type possess an infinite number 
of zeros. Thus one is faced with the fact that there is 
an infinite manifold of phase functions which are con- 
sistent with the observed intensity! Fortunately, the 
situation is not quite as discouraging as this result 
would indicate, for all but a finite number of these 
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zeros have essentially no effect on the calculated e.d.d. 
The rationale for this conclusion was discussed by 
Nussenzveig (1967), who showed that the asymptotic 
distribution of zeros is determined by the properties 
of the cutoff of t(x) and contains no information about 
the shape of t(x) within its interval of definition. This 
information is contained in the zeros located relatively 
closer to the origin. Since the number of zeros of T(Z) 
within a radius IZl-< R is 

n(R)~ --a R,  (30) zc 

as was shown by Titchmarsh (1926), it is apparent that 
there are a relatively small number of zeros in the 
region of experimental interest. Thus, in a practical 
sense, there are only a small finite number of phase 
solutions consistent with the data. 

There are other properties of t(x) which allow one 
to calculate all of the various phase possibilities in- 
herent in the preceding discussion, but do not allow 
one to specify which of them is the correct one. Up to 
this point, the reality condition has not been explicitly 
imposed on t(x). When it is specified that t(x) must 
be real, it is apparent that 

T*(Z*)=T(-Z) .  (31) 

Hence, we can conclude that the zeros of T(Z) are 
either purely imaginary or occur in pairs symmetrically 
located about the imaginary axis; i.e., if Z is a zero, 
then so is - Z * .  Furthermore, if it is specified that 
t(x) is positive, there can be no purely imaginary zeros. 
Although the positions of the zeros of T(Z) are severe- 
ly restricted by the reality and positivity conditions on 
t(x), they are apparently not determinable from the 
magnitude of T(X). This appears to be an inherent 
obstacle in the phase problem. 

Despite the ambiguity of the correct phase solution 
from the intensity data, one can nevertheless calculate 
all of the possibilities. Hence, a knowledge of the chem- 
ical composition and other structural features may al- 
low one to choose the correct solution from the given 
possibilities. Walther (1963) has shown that all possible 
solutions to the phase problem differ only by 'zero 
flips' about the real axis where Zn and -Zn* are re- 
placed by Z~* and -Zn ,  respectively. Thus, the funda- 
mental solutions I or II can be calculated directly from 
equation (12) and the resulting distribution of zeros 
in the lower half plane determined by inspection. Each 
of the possible T(X) functions can then be calculated 
from equation (29) by systematically transposing all 
combinations of the equivalent pairs of zeros across 
the real axis. As a final point, it should be noted that 
when the structure t(x) has a center of symmetry, it 
follows that if Z,  and -Z~* are zeros, then Z~* and 
- Z ~  must also be zeros. Thus, there is no ambiguity 
in this case and the phase problem has a unique solu- 
tion. 

The usefulness of these theoretical developments in 
~olving asymmetric one-dimensional structures has 

been verified for a biological membrane of considerable 
interest (King, Blaurock & Stoeckenius, in prepara- 
tion). Purple membrane, a cell membrane fragment 
isolated from Halobacterium halobium, apparently acts 
as a light-driven proton pump which may function as 
an alternative energy-conversion mechanism to the 
normal metabolic processes. These functional con- 
siderations, combined with electron microscopy (Blau- 
rock & Stoeckenius, 1971), indicate that the membrane 
must have an asymmetric distribution in a direction 
perpendicular to its surface. The continuous X-ray in- 
tensity from the profile can be obtained and hence this 
system is an ideal subject for interpretation by the 
theory described in this paper. Although a unique struc- 
ture could not be calculated from the theory, it does 
yield a possible profile which is consistent with the 
known chemical and physical properties of the mem- 
brane. 

APPENDIX 
Riemann boundary-value problem 

For a more detailed discussion of the Riemann bound- 
ary-value problem see Gakhov (1966) or Muskhelish- 
viii (1953). In this Appendix the treatment of the prob- 
lem by Gakhov will be discussed and its essential fea- 
tures outlined. Although the problem can be defined 
and solved for a complicated system of intersecting 
arcs and contours in the complex plane, only the special 
cases of the problem for the real axis and the seg- 
mented real axis will be covered here. 

The Riemann problem consists of finding two func- 
tions ~ + ( Z )  and ~ - ( Z ) ,  analytic in the upper and 
lower half planes respectively, whose limiting values 
satisfy the equation 

• +(X)=G(X)~-(X)+g(X) ( - c ~ < X < c ~ ) .  (A-l) 

It is assumed that G(X) and g(X) satisfy a Lipschitz 
condition of order 2 and also that G(X)v~O. Of funda- 
mental importance is the index m of the function G(X), 
which is defined by 

m =  ~ d In G(X).  (A-2) 

It follows from the properties of the logarithmic resi- 
due of the function G(X) that m is determined by the 
number of zeros of tb +(Z) and tb-(Z) .  

If one first considers the homogeneous Riemann 
problem, where g ( X ) = 0  in equation (A-I), one can 
formally obtain the solution by taking logarithms of 
both sides 

In q~ + ( X ) - l n  ~ - ( X ) = l n  G(X). (A-3) 

From this so-called Plemelj formula, it follows that the 
solution to the problem is given by 

~ + ( Z ) = A  e x p [ r + ( Z ) ] ,  ~ - ( z ) = a  e x p [ r - ( Z ) ] ,  
(A-4) 
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where 
1 {,oo In G(X')dX' 

F ( Z ) =  (A-5) 
~-oo X ' - Z  

For this formal result to be correct, In G(X) must be 
a single-valued function, that is, m must be zero. In 
the more general case, with non-zero m, the solution 
can be obtained by considering the function 

Go(X)=G(X) (X+-i-)X-i --m (A-6) 

which has zero index and whose logarithm is a one- 
valued function. Thus, the solution to the homoge- 
neous problem with positive index m can be written 

~+(Z)=Pm(Z) (Z+i)-mexp F+(Z) , 
• -(Z)=P,,,(Z) ( Z - i )  -m exp F-(Z) ,  (A-7) 

where 

1 f ~ In Go(X')dX' 
r ( z ) =  -2~-._oo x ' - z  ' (A-S) 

and where Pm(Z) is a polynomial of degree not higher 
than m. 

The solution to the non-homogeneous problem, with 
g(X)#O, is easily obtained from the preceding. We 
introduce the analytic function 

1 I~ - g (X ' )dX '  
~v(z) = U ~  oo o +(x') ( x ' -  z )  ' (A-9) 

where 0(Z), the so-called canonical function, is defined 

0 +(Z)=exp F+(Z),  
i Z - i  -m 

0 - ( Z ) :  [ -~ -~- )  exp F - ( Z ) .  (A-IO) 

This enables us to write the analytic continuation of 
the boundary condition (A-l) as 

~+(Z) ~-(Z) 
0+(Z ) ~u+(Z)- 0-(Z) ~'-(Z) 

_ P m ( Z )  ( m > 0 ) .  (A-11) 
( Z + i ) m  -- 

From this follows the general solution to the problem 

p.(z)  ] 
• ( z ) = o ( z )  ~[t(z)+ (Z+i)m m>O (A-12) 

O(Z)=O(Z)[~(Z)+C] m < 0 .  (A-13) 

If the solution is required to vanish at infinity, Pm is 
replaced by Pro-1 in equation (A-12) and C = 0  in 

equation (A-13). Furthermore, for the case where m < 0, 
it is required for the analyticity of • (Z) at infinity that 

C = -  ~ ' - ( - 0 ,  

i ~_ g(X')dX' and ~O+(X ') (X'+iy' = 0  ( K = Z , . . . , - m ) .  (A-14) 

Finally we will consider the Riemann boundary- 
value problem for the segmented real axis. This is neces- 
sary when the function G(X) has points of discontinuity 
on the real axis. The segments consist of the intervals 
between these points. In the solution to the phase prob- 
lem where T(Z) has real zeros, the phase function 
~(X) is not continuous at the zero points. The proce- 
dure is similar to the previous case except that the 
behavior of ~+(X) at the points of discontinuity must 
be considered. Since the solution is rather lengthy, the 
reader is referred to Gakhov (1966) for the details of 
the calculation. The solution to the non-homogeneous 
problem for the special case with G(X) = - 1 is given by 

R z__2) g X') dX' 
(A-15) 

2hi J_oo R(X') X ' - Z '  
where 

N 
R ( Z ) = H  (ZZ-X]) ,  (A-16) 

j=l 

and the points X s are the zeros. 

References 

BLAUROCK, A. E. & STOECKENIUS, W. (1971). Nature New 
Biol. 233, 152-155. 

CALOERON, A. & PEPINSKY, R. (1952). Computing Methods 
and the Phase Problem in X-ray Crystal Analysis. Edited 
by R. PEPINSKY. State College, Pa. 

DETTMAN, J. W. (1965). Applied Complex Variables. New 
York: Macmillan. 

GAKHOV, F. D. (1966). Boundary Value Problems. London: 
Pergamon Press. 

HOSEMANN, R. & BAGCm, S. N. (1962). Direct Analysis of 
Diffraction by Matter. Amsterdam: North Holland. 

KING, G. I. & WORTmNGTON, C. R. (1971). Phys. Lett. 35, 
259-260. 

LESSLAUER, W. & BLASIE, J. K. (1972). Biophys. J. 12, 175- 
190. 

MUSKI~LISnVlLI, N. I. (1953). Singular Integral Equations. 
Groningen: Noordhoff. 

NUSSENZVEIG, H. M. (1967). 3". Math. Phys. 8, 561-573. 
TITCHMARSH, E. C. (1926). Proe. Lond. Math. Soc. 25, 

283-296. 
TITCHMARSH, E. C. (1939). The Theory of Functions. Oxford 

Univ. Press. 
TOLL, J. S. (1956). Phys. Rev. 104, 1760-1772. 
WALTHER, A. (1963). Opt. Aeta, 10, 41-53. 
WORTHINGTON, C. R., KING, G. I. & MCINTOSH, T. J. (1973). 

Biophys. J. 13, 480-494. 


